Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
2.
Vet Pathol ; 61(2): 201-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37698272

RESUMO

The SARS-CoV-2 pandemic required the immediate need to transfer inactivated tissue from biosafety level (BSL)-3 to BSL-1 areas to enable downstream analytical methods. No validated SARS-CoV-2 inactivation protocols were available for either formaldehyde (FA)-fixed or glutaraldehyde (GA)-fixed tissues. Therefore, representative tissue from ferrets and hamsters was spiked with 2.2 × 106 tissue culture infectious dose 50% per ml (TCID50/ml) SARS-CoV-2 or were obtained from mice experimentally infected with SARS-CoV-2. SARS-CoV-2 inactivation was demonstrated with 4% FA or 5% GA at room temperature for 72 hours by a titer reduction of up to 103.8 TCID50/ml in different animal tissues with a maximum protein content of 100 µg/mg and a thickness of up to 10 mm for FA and 8 mm for GA. Our protocols can be easily adapted for validating the inactivation of other pathogens to allow for the transfer of biological samples from BSL-3 areas to BSL-1 laboratories.


Assuntos
COVID-19 , Animais , Camundongos , Animais de Laboratório , Contenção de Riscos Biológicos/veterinária , COVID-19/veterinária , Furões , Formaldeído/farmacologia , Glutaral/farmacologia , Laboratórios , SARS-CoV-2 , Inativação de Vírus
3.
Antiviral Res ; 221: 105778, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065245

RESUMO

The ongoing threat of COVID-19 has highlighted the need for effective prophylaxis and convenient therapies, especially for outpatient settings. We have previously developed highly potent single-domain (VHH) antibodies, also known as nanobodies, that target the Receptor Binding Domain (RBD) of the SARS-CoV-2 Spike protein and neutralize the Wuhan strain of the virus. In this study, we present a new generation of anti-RBD nanobodies with superior properties. The primary representative of this group, Re32D03, neutralizes Alpha to Delta as well as Omicron BA.2.75; other members neutralize, in addition, Omicron BA.1, BA.2, BA.4/5, and XBB.1. Crystal structures of RBD-nanobody complexes reveal how ACE2-binding is blocked and also explain the nanobodies' tolerance to immune escape mutations. Through the cryo-EM structure of the Ma16B06-BA.1 Spike complex, we demonstrated how a single nanobody molecule can neutralize a trimeric spike. We also describe a method for large-scale production of these nanobodies in Pichia pastoris, and for formulating them into aerosols. Exposing hamsters to these aerosols, before or even 24 h after infection with SARS-CoV-2, significantly reduced virus load, weight loss and pathogenicity. These results show the potential of aerosolized nanobodies for prophylaxis and therapy of coronavirus infections.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Cricetinae , Humanos , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Glicoproteína da Espícula de Coronavírus , Técnicas de Cultura de Células , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Cell Rep Med ; 4(9): 101152, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37572667

RESUMO

Male sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males. We analyzed exome sequencing data obtained from a human COVID-19 cohort (n = 2,866) using a machine-learning approach and identify a CYP19A1-activity-increasing mutation to be associated with the development of severe disease in men but not women. We further analyzed human autopsy-derived lungs (n = 86) and detect increased pulmonary CYP19A1 expression at the time point of death in men compared with women. In the golden hamster model, we show that SARS-CoV-2 infection causes increased CYP19A1 expression in the lung that is associated with dysregulated plasma sex hormone levels and reduced long-term pulmonary function in males but not females. Treatment of SARS-CoV-2-infected hamsters with a clinically approved CYP19A1 inhibitor (letrozole) improves impaired lung function and supports recovery of imbalanced sex hormones specifically in males. Our study identifies CYP19A1 as a contributor to sex-specific SARS-CoV-2 disease outcome in males. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may furnish a new therapeutic strategy for individualized patient management and treatment.


Assuntos
Aromatase , COVID-19 , Feminino , Humanos , Masculino , Aromatase/genética , Letrozol , SARS-CoV-2 , COVID-19/genética , Estradiol , Testosterona
5.
J Virol Methods ; 317: 114733, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068591

RESUMO

ß-Propiolactone (BPL) is an organic compound widely used as an inactivating agent in vaccine development and production, for example for SARS-CoV, SARS-CoV-2 and Influenza viruses. Inactivation of pathogens by BPL is based on an irreversible alkylation of nucleic acids but also on acetylation and cross-linking between proteins, DNA or RNA. However, the protocols for BPL inactivation of viruses vary widely. Handling of infectious, enriched SARS-CoV-2 specimens and diagnostic samples from COVID-19 patients is recommended in biosafety level (BSL)- 3 or BSL-2 laboratories, respectively. We validated BPL inactivation of SARS-CoV-2 in saliva samples with the objective to use saliva from COVID-19 patients for training of scent dogs for the detection of SARS-CoV-2 positive individuals. Therefore, saliva samples and cell culture medium buffered with NaHCO3 (pH 8.3) were comparatively spiked with SARS-CoV-2 and inactivated with 0.1 % BPL for 1 h (h) or 71 h ( ± 1 h) at 2-8 °C, followed by hydrolysis of BPL at 37 °C for 1 or 2 h, converting BPL into non-toxic beta-hydroxy-propionic acid. SARS-CoV-2 inactivation was demonstrated by a titre reduction of up to 10^4 TCID50/ml in the spiked samples for both inactivation periods using virus titration and virus isolation, respectively. The validated method was confirmed by successful inactivation of pathogens in saliva samples from COVID-19 patients. Furthermore, we reviewed the currently available literature on SARS-CoV-2 inactivation by BPL. Accordingly, BPL-inactivated, hydrolysed samples can be handled in a non-laboratory setting. Furthermore, our BPL inactivation protocols can be adapted to validation experiments with other pathogens.


Assuntos
COVID-19 , Vírus , Cães , Animais , Propiolactona , Saliva , Odorantes , COVID-19/diagnóstico , Inativação de Vírus , SARS-CoV-2
6.
Front Immunol ; 14: 1283595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169647

RESUMO

Neutrophil extracellular traps (NETs) are net-like structures released by activated neutrophils upon infection [e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] as part of the innate immune response that have protective effects by pathogen entrapment and immobilization or result in detrimental consequences for the host due to the massive release of NETs and their impaired degradation by nucleases like DNase-1. Higher amounts of NETs are associated with coronavirus disease 2019 (COVID-19) severity and are a risk factor for severe disease outcome. The objective of our study was to investigate NET formation in young versus aged ferrets to evaluate their value as translational model for SARS-CoV-2-infection and to correlate different NET markers and virological parameters. In each of the two groups (young and aged), nine female ferrets were intratracheally infected with 1 mL of 106 TCID50/mL SARS-CoV-2 (BavPat1/2020) and euthanized at 4, 7, or 21 days post-infection. Three animals per group served as negative controls. Significantly more infectious virus and viral RNA was found in the upper respiratory tract of aged ferrets. Interestingly, cell-free DNA and DNase-1 activity was generally higher in bronchoalveolar lavage fluid (BALF) but significantly lower in serum of aged compared to young ferrets. In accordance with these data, immunofluorescence microscopy revealed significantly more NETs in lungs of aged compared to young infected ferrets. The association of SARS-CoV-2-antigen in the respiratory mucosa and NET markers in the nasal conchae, but the absence of virus antigen in the lungs, confirms the nasal epithelium as the major location for virus replication as described for young ferrets. Furthermore, a strong positive correlation was found between virus shedding and cell-free DNA or the level of DNAse-1 activity in aged ferrets. Despite the increased NET formation in infected lungs of aged ferrets, the animals did not show a strong NET phenotype and correlation among tested NET markers. Therefore, ferrets are of limited use to study SARS-CoV-2 pathogenesis associated with NET formation. Nevertheless, the mild to moderate clinical signs, virus shedding pattern, and the lung pathology of aged ferrets confirm those animals as a relevant model to study age-dependent COVID-19 pathogenesis.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Armadilhas Extracelulares , Animais , Feminino , SARS-CoV-2 , Furões , Modelos Animais de Doenças , Desoxirribonucleases
7.
BMJ Glob Health ; 7(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368765

RESUMO

INTRODUCTION: Previous research demonstrated that medical scent detection dogs have the ability to distinguish SARS-CoV-2 positive from negative samples with high diagnostic accuracy. To deploy these dogs as a reliable screening method, it is mandatory to examine if canines maintain their high diagnostic accuracy in real-life screening settings. We conducted a study to evaluate the performance of medical scent detection dogs under real-life circumstances. METHODS: Eight dogs were trained to detect SARS-CoV-2 RT-qPCR-positive samples. Four concerts with a total of 2802 participants were held to evaluate canines' performance in screening individuals for SARS-CoV-2 infection. Sweat samples were taken from all participants and presented in a line-up setting. In addition, every participant had been tested with a SARS-CoV-2 specific rapid antigen test and a RT-qPCR and they provided information regarding age, sex, vaccination status and medical disease history. The participants' infection status was unknown at the time of canine testing. Safety measures such as mask wearing and distance keeping were ensured. RESULTS: The SARS-CoV-2 detection dogs achieved a diagnostic specificity of 99.93% (95% CI 99.74% to 99.99%) and a sensitivity of 81.58% (95% CI 66.58% to 90.78%), respectively. The overall rate of concordant results was 99.68%. The majority of the study population was vaccinated with varying vaccines and vaccination schemes, while several participants had chronic diseases and were under chronic medication. This did not influence dogs' decisions. CONCLUSION: Our results demonstrate that SARS-CoV-2 scent detection dogs achieved high diagnostic accuracy in a real-life scenario. The vaccination status, previous SARS-CoV-2 infection, chronic disease and medication of the participants did not influence the performance of the dogs in detecting the acute infection. This indicates that dogs provide a fast and reliable screening option for public events in which high-throughput screening is required.


Assuntos
COVID-19 , Humanos , Cães , Animais , COVID-19/diagnóstico , SARS-CoV-2 , Sensibilidade e Especificidade , Programas de Rastreamento
8.
J Am Chem Soc ; 144(37): 17022-17032, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084022

RESUMO

NAD+-reducing [NiFe] hydrogenases are valuable biocatalysts for H2-based energy conversion and the regeneration of nucleotide cofactors. While most hydrogenases are sensitive toward O2 and elevated temperatures, the soluble NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus (HtSH) is O2-tolerant and thermostable. Thus, it represents a promising candidate for biotechnological applications. Here, we have investigated the catalytic activity and active-site structure of native HtSH and variants in which a glutamate residue in the active-site cavity was replaced by glutamine, alanine, and aspartate. Our biochemical, spectroscopic, and theoretical studies reveal that at least two active-site states of oxidized HtSH feature an unusual architecture in which the glutamate acts as a terminal ligand of the active-site nickel. This observation demonstrates that crystallographically observed glutamate coordination represents a native feature of the enzyme. One of these states is diamagnetic and characterized by a very high stretching frequency of an iron-bound active-site CO ligand. Supported by density-functional-theory calculations, we identify this state as a high-valent species with a biologically unprecedented formal Ni(IV) ground state. Detailed insights into its structure and dynamics were obtained by ultrafast and two-dimensional infrared spectroscopy, demonstrating that it represents a conformationally strained state with unusual bond properties. Our data further show that this state is selectively and reversibly formed under oxic conditions, especially upon rapid exposure to high O2 levels. We conclude that the kinetically controlled formation of this six-coordinate high-valent state represents a specific and precisely orchestrated stereoelectronic response toward O2 that could protect the enzyme from oxidative damage.


Assuntos
Hidrogenase , Alanina/metabolismo , Ácido Aspártico/metabolismo , Domínio Catalítico , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hidrogenase/química , Hydrogenophilaceae , Ferro/química , Ligantes , NAD/metabolismo , Níquel/química , Oxirredução , Oxigênio/química
9.
JMIR Med Educ ; 8(3): e24306, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35900827

RESUMO

BACKGROUND: Learning with virtual patients is highly popular for fostering clinical reasoning in medical education. However, little learning with virtual patients is done collaboratively, despite the potential learning benefits of collaborative versus individual learning. OBJECTIVE: This paper describes the implementation of student collaboration in a virtual patient platform. Our aim was to allow pairs of students to communicate remotely with each other during virtual patient learning sessions. We hypothesized that we could provide a collaborative tool that did not impair the usability of the system compared to individual learning and that this would lead to better diagnostic accuracy for the pairs of students. METHODS: Implementing the collaboration tool had five steps: (1) searching for a suitable software library, (2) implementing the application programming interface, (3) performing technical adaptations to ensure high-quality connections for the users, (4) designing and developing the user interface, and (5) testing the usability of the tool in 270 virtual patient sessions. We compared dyad to individual diagnostic accuracy and usability with the 10-item System Usability Scale. RESULTS: We recruited 137 students who worked on 6 virtual patients. Out of 270 virtual patient sessions per group (45 dyads times 6 virtual patients, and 47 students working individually times 6 virtual patients minus 2 randomly selected deleted sessions) the students made successful diagnoses in 143/270 sessions (53%, SD 26%) when working alone and 192/270 sessions (71%, SD 20%) when collaborating (P=.04, η2=0.12). A usability questionnaire given to the students who used the collaboration tool showed a usability score of 82.16 (SD 1.31), representing a B+ grade. CONCLUSIONS: The collaboration tool provides a generic approach for collaboration that can be used with most virtual patient systems. The collaboration tool helped students diagnose virtual patients and had good overall usability. More broadly, the collaboration tool will provide an array of new possibilities for researchers and medical educators alike to design courses for collaborative learning with virtual patients.

10.
Front Med (Lausanne) ; 9: 877259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783627

RESUMO

There is a growing number of COVID-19 patients experiencing long-term symptoms months after their acute SARS-CoV-2 infection. Previous research proved dogs' ability to detect acute SARS-CoV-2 infections, but has not yet shown if dogs also indicate samples of patients with post-COVID-19 condition (Long COVID). Nine dogs, previously trained to detect samples of acute COVID-19 patients, were confronted with samples of Long COVID patients in two testing scenarios. In test scenario I (samples of acute COVID-19 vs. Long COVID) dogs achieved a mean sensitivity (for acute COVID-19) of 86.7% (95%CI: 75.4-98.0%) and a specificity of 95.8% (95%CI: 92.5-99.0%). When dogs were confronted with Long COVID and negative control samples in scenario IIa, dogs achieved a mean sensitivity (for Long COVID) of 94.4 (95%CI: 70.5-100.0%) and a specificity of 96.1% (95%CI: 87.6-100.0%). In comparison, when acute SARS-CoV-2 positive samples and negative control samples were comparatively presented (scenario IIb), a mean sensitivity of 86.9 (95%CI: 55.7-100.0%) and a specificity of 88.1% (95%CI: 82.7-93.6%) was attained. This pilot study supports the hypothesis of volatile organic compounds (VOCs) being long-term present after the initial infection in post-COVID-19 patients. Detection dogs, trained with samples of acute COVID-19 patients, also identified samples of Long COVID patients with a high sensitivity when presented next to samples of healthy individuals. This data may be used for further studies evaluating the pathophysiology underlying Long COVID and the composition of specific VOC-patterns released by SARS-CoV-2 infected patients throughout the course of this complex disease.

11.
J Cutan Med Surg ; 26(5): 465-472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588084

RESUMO

BACKGROUND AND OBJECTIVES: After local flaps, it may be necessary to reconstruct the contour of the nasal ala. This is possible with a single-stage all-layer shaping suture. In the present study, the functional and aesthetic results after single-stage reconstruction of the nasal ala were prospectively evaluated. PATIENTS AND METHODS: Patients who underwent surgery for skin tumors of the nose between 06/2019 and 06/2020 who required reconstruction of the nasal ala as part of the defect closure and had an all-layer suture used were prospectively included in the study. A standardized evaluation of aesthetic and functional outcome was conducted by the patient and a physician at discharge as well as 4 weeks later. Patients additionally underwent a follow-up survey 6 months later. RESULTS: Thirty-seven patients were included in the study. Four weeks postoperatively, all flaps were found to be fully healed and vital. Aesthetic outcome at 4 weeks was rated as very good or good by physicians in 73% and by patients in 78.4%. Persistent complications due to reduced blood flow were not observed. CONCLUSION: The reshaping of the nasal ala as part of the defect reconstruction with an all-layer suture demonstrates very good aesthetic as well as functional results and can be performed in a single-stage procedure. .


Assuntos
Carcinoma Basocelular , Neoplasias Nasais , Rinoplastia , Carcinoma Basocelular/patologia , Humanos , Nariz/patologia , Nariz/cirurgia , Neoplasias Nasais/patologia , Neoplasias Nasais/cirurgia , Estudos Prospectivos , Rinoplastia/métodos , Retalhos Cirúrgicos/cirurgia , Suturas
12.
Vet Pathol ; 59(4): 661-672, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35001763

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in an ongoing pandemic with millions of deaths worldwide. Infection of humans can be asymptomatic or result in fever, fatigue, dry cough, dyspnea, and acute respiratory distress syndrome with multiorgan failure in severe cases. The pathogenesis of COVID-19 is not fully understood, and various models employing different species are currently applied. Ferrets can be infected with SARS-CoV-2 and efficiently transmit the virus to contact animals. In contrast to hamsters, ferrets usually show mild disease and viral replication restricted to the upper airways. Most reports have used the intranasal inoculation route, while the intratracheal infection model is not well characterized. Herein, we present clinical, virological, and pathological data from young ferrets intratracheally inoculated with SARS-CoV-2. Infected animals showed no significant clinical signs, and had transient infection with peak viral RNA loads at 4 days postinfection, mild to moderate rhinitis, and pulmonary endothelialitis/vasculitis. Viral antigen was exclusively found in the respiratory epithelium of the nasal cavity, indicating a particular tropism for cells in this location. Viral antigen was associated with epithelial damage and influx of inflammatory cells, including activated neutrophils releasing neutrophil extracellular traps. Scanning electron microscopy of the nasal respiratory mucosa revealed loss of cilia, shedding, and rupture of epithelial cells. The currently established ferret SARS-CoV-2 infection models are comparatively discussed with SARS-CoV-2 pathogenesis in mink, and the advantages and disadvantages of both species as research models for zoonotic betacoronaviruses are highlighted.


Assuntos
COVID-19 , Doenças dos Roedores , Animais , Antígenos Virais , COVID-19/veterinária , Cricetinae , Modelos Animais de Doenças , Furões , Mucosa Respiratória , SARS-CoV-2
13.
World J Urol ; 40(3): 781-788, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34910235

RESUMO

PURPOSE: Comparisons of ureteroscopy (URS), extracorporeal shockwave lithotripsy (SWL), and percutaneous nephrolithotomy (PCNL) for urolithiasis considering long-term health and economic outcomes based on claims data are rare. Our aim was to analyze URS, SWL, and PCNL regarding complications within 30 days, re-intervention, healthcare costs, and sick leave days within 12 months, and to investigate inpatient and outpatient SWL treatment as the latter was introduced in Germany in 2011. METHODS: This retrospective cohort study based on German health insurance claims data included 164,203 urolithiasis cases in 2008-2016. We investigated the number of complications within 30 days, as well as time to re-intervention, number of sick leave days and hospital and ambulatory health care costs within a 12-month follow-up period. We applied negative binomial, Cox proportional hazard, gamma and two-part models and adjusted for patient variables. RESULTS: Compared to URS cases, SWL and PCNL had fewer 30-day complications, time to re-intervention within 12 months was decreased for SWL and PCNL, SWL and PCNL were correlated with a higher number of sick leave days, and SWL and particularly PCNL were associated with higher costs. SWL outpatients had fewer complications, re-interventions and lower costs than inpatients. This study was limited by the available information in claims data. CONCLUSION: URS cases showed benefits in terms of fewer re-interventions, fewer sick leave days, and lower healthcare costs. Only regarding complications, SWL was superior. This emphasizes URS as the most frequent treatment choice. Furthermore, SWL outpatients showed less costs, fewer complications, and re-interventions than inpatients.


Assuntos
Cálculos Renais , Litotripsia , Nefrolitotomia Percutânea , Urolitíase , Humanos , Seguro Saúde , Cálculos Renais/terapia , Litotripsia/efeitos adversos , Nefrolitotomia Percutânea/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Ureteroscopia/efeitos adversos , Urolitíase/etiologia , Urolitíase/cirurgia
14.
Front Med (Lausanne) ; 8: 749588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869443

RESUMO

Background: Testing of possibly infected individuals remains cornerstone of containing the spread of SARS-CoV-2. Detection dogs could contribute to mass screening. Previous research demonstrated canines' ability to detect SARS-CoV-2-infections but has not investigated if dogs can differentiate between COVID-19 and other virus infections. Methods: Twelve dogs were trained to detect SARS-CoV-2 positive samples. Three test scenarios were performed to evaluate their ability to discriminate SARS-CoV-2-infections from viral infections of a different aetiology. Naso- and oropharyngeal swab samples from individuals and samples from cell culture both infected with one of 15 viruses that may cause COVID-19-like symptoms were presented as distractors in a randomised, double-blind study. Dogs were either trained with SARS-CoV-2 positive saliva samples (test scenario I and II) or with supernatant from cell cultures (test scenario III). Results: When using swab samples from individuals infected with viruses other than SARS-CoV-2 as distractors (test scenario I), dogs detected swab samples from SARS-CoV-2-infected individuals with a mean diagnostic sensitivity of 73.8% (95% CI: 66.0-81.7%) and a specificity of 95.1% (95% CI: 92.6-97.7%). In test scenario II and III cell culture supernatant from cells infected with SARS-CoV-2, cells infected with other coronaviruses and non-infected cells were presented. Dogs achieved mean diagnostic sensitivities of 61.2% (95% CI: 50.7-71.6%, test scenario II) and 75.8% (95% CI: 53.0-98.5%, test scenario III), respectively. The diagnostic specificities were 90.9% (95% CI: 87.3-94.6%, test scenario II) and 90.2% (95% CI: 81.1-99.4%, test scenario III), respectively. Conclusion: In all three test scenarios the mean specificities were above 90% which indicates that dogs can distinguish SARS-CoV-2-infections from other viral infections. However, compared to earlier studies our scent dogs achieved lower diagnostic sensitivities. To deploy COVID-19 detection dogs as a reliable screening method it is therefore mandatory to include a variety of samples from different viral respiratory tract infections in dog training to ensure a successful discrimination process.

15.
Eur J Hosp Pharm ; 28(6): 301-305, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34697045

RESUMO

OBJECTIVES: Clinical pharmacy services in German hospitals appear to be underdeveloped compared with other European countries. However, recent developments have increased the interest in expanding these services. Detailed data about the current state of clinical pharmacy services in Germany are lacking. This survey establishes the current level of pharmacy services in Germany and the barriers to implementation. METHODS: An online survey conducted in 2017 was distributed to directors of all 389 German hospital pharmacies. The survey contained 26 questions addressing hospital and pharmacy characteristics, clinical pharmacy services provided, the number of clinical pharmacists and the frequency as well as the quality assurance of these services. RESULTS: There were 133 responses (34%). Of these, 84 (63%) pharmacies provided some form of clinical pharmacy services. Based on the 389 contacted pharmacies, a clinical pharmacy service is available in at least 22% of hospital pharmacies in Germany. On average there are 2.4 full-time equivalent (FTE) clinical pharmacists per hospital employed, although there is a wide variation in numbers (0.3-22 FTE) and service provision between hospitals. Clinical pharmacy services are generally provided on a daily or weekly basis, with a principal focus on general surgery, critical care and general medicine wards. CONCLUSIONS: This is the first survey providing a detailed picture of clinical pharmacy services in Germany. There is wide variation in clinical service provision among hospitals, with some hospitals having developed a comprehensive range of clinical services. Compared with other countries, particularly the UK where the focus has shifted to provision of 7-day clinical services, the gap in clinical pharmacy services remains large. The focus should be turned to refining clinical pharmacy services in hospital admissions and discharge planning while also improving Health IT, the opportunities for specialisation and aligning education in accordance with the EAHP common training framework.


Assuntos
Serviço de Farmácia Hospitalar , Farmácia , Alemanha/epidemiologia , Humanos , Farmacêuticos , Inquéritos e Questionários
16.
Emerg Infect Dis ; 27(12): 3115-3118, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695368

RESUMO

We conducted a severe acute respiratory syndrome coronavirus 2 antibody seroprevalence study among >2,000 domestic cats from 4 countries during the first coronavirus disease wave in Europe. We found 4.4% seroprevalence using a virus neutralization test and 4.3% using a receptor-binding domain ELISA, demonstrating probable human-to-cat transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Gatos , Europa (Continente)/epidemiologia , Humanos , Estudos Soroepidemiológicos
17.
BMC Infect Dis ; 21(1): 707, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315418

RESUMO

BACKGROUND: The main strategy to contain the current SARS-CoV-2 pandemic remains to implement a comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. Scent dogs could support current testing strategies. METHODS: Ten dogs were trained for 8 days to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested on three different body fluids (saliva, urine, and sweat) in a randomised, double-blind controlled study. RESULTS: Dogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated saliva samples with a diagnostic sensitivity of 84% (95% CI: 62.5-94.44%) and specificity of 95% (95% CI: 93.4-96%). In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids, diagnostic sensitivity and specificity were 95% (95% CI: 66.67-100%) and 98% (95% CI: 94.87-100%) for urine, 91% (95% CI: 71.43-100%) and 94% (95% CI: 90.91-97.78%) for sweat, 82% (95% CI: 64.29-95.24%), and 96% (95% CI: 94.95-98.9%) for saliva respectively. CONCLUSIONS: The scent cognitive transfer performance between inactivated and non-inactivated samples as well as between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are released across different body secretions, independently from the patient's symptoms. All tested body fluids appear to be similarly suited for reliable detection of SARS-CoV-2 infected individuals.


Assuntos
Líquidos Corporais , COVID-19 , Animais , Cães , Humanos , Odorantes , Pandemias , SARS-CoV-2 , Saliva
18.
Emerg Infect Dis ; 27(7): 1974-1976, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152973

RESUMO

We report a therapy cat in a nursing home in Germany infected with severe acute respiratory syndrome coronavirus 2 during a cluster outbreak in the home residents. Although we confirmed prolonged presence of virus RNA in the asymptomatic cat, genome sequencing showed no further role of the cat in human infections on site.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Gatos , Surtos de Doenças , Alemanha , Humanos , RNA Viral/genética , Aposentadoria
20.
Microorganisms ; 9(4)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919617

RESUMO

Tick-borne encephalitis (TBE) is a severe neurologic disease in Europe and Asia. Disease expression ranges from asymptomatic to severe neurological clinical pictures, involving meningitis, encephalitis, meningoencephalitis and potentially fatal outcome. Humans mostly become infected with TBE virus (TBEV) by the bite of an infected tick. Gastrointestinal (GI) symptoms in humans are mainly attributed to the first viremic phase of TBEV infection with unspecific symptoms and/or resulting from severe neurological impairment of the central nervous system (CNS). We used the subcutaneous TBEV-infection of C57BL/6 mice as a model to analyze GI complications of TBE. We observed the acute distension and segmental dilation of the intestinal tract in 10 of 22 subcutaneously infected mice. Histological analysis revealed an intramural enteric ganglioneuritis in the myenteric and submucosal plexus of the small and large intestine. The numbers of infiltrating macrophages and CD3+ T lymphocytes correlated with the severity of ganglioneuritis, indicating an immune-mediated pathogenesis due to TBEV-infection of the enteric plexus. Our study demonstrates that the inflammation of enteric intramural ganglia presents to be a common feature in TBEV-infected mice. Accordingly, the results of this mouse model emphasize that GI disease manifestation and consequences for long-term sequelae should not be neglected for TBEV-infections in humans and require further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...